Intrusion Detection System using Fuzzy Logic
نویسنده
چکیده
Intrusion detection plays an important role in today’s computer and communication technology. As such it is very important to design time efficient Intrusion Detection System (IDS) low in both, False Positive Rate (FPR) and False Negative Rate (FNR), but high in attack detection precision. To achieve that, this paper proposes IDS model based on Fuzzy Logic. Proposed model consists of three parts, Input Reduction System (IRS), which uses Principal Component Analysis to reduce the dimensions of the system from 41 to 10, Classification System, which uses Fuzzy C Means to create data clusters based on training data and Pattern Recognition System based on Nearest Neighborhood method, which classifies new-coming data records to their respective clusters. Based on different attack types, the system performance in classification process is different and the best performance is achieved for PROBE attack, with 99.3% success rate, and the best performance in pattern recognition is achieved for U2R with 58.8% of success rate.
منابع مشابه
Designing an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملIntrusion Detection Using Data Mining Along Fuzzy Logic and Genetic Algorithms
Intrusion Detection is one of the important area of research. Our work has explored the possibility of integrating the fuzzy logic with Data Mining methods using Genetic Algorithms for intrusion detection. The reasons for introducing fuzzy logic is two fold, the first being the involvement of many quantitative features where there is no separation between normal operations and anomalies. Thus f...
متن کاملHybrid Fuzzy Based Intrusion Detection System for Wireless Local Area Networks (HFIDS)
ISSN 2250 – 110X | © 2011 Bonfring Abstract--The drawback of the anomaly based intrusion detection in a wireless network is the high rate of false positive. By designing a hybrid intrusion detection system can solve this by connecting a misuse detection module to the anomaly detection module. In this paper, we propose to develop a hybrid intrusion detection system for wireless local area networ...
متن کاملAgent Based Intrusion Detection with Fuzzy Logic
In this paper we propose a framework for intrusion detection called Fuzzy Agent-Based Intrusion Detection. A unique feature of our model is that the agents use the fuzzy logic to process log files. This reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. Key-Words: intrusion detection, ...
متن کاملNetwork Intrusion Detection System Using Fuzzy Logic
IDS which are increasingly a key part of system defense are used to identify abnormal activities in a computer system. In general, the traditional intrusion detection relies on the extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining and machine learning techniques have been used in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013